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ABSTRACT 

The mean volume of boxes circumscribed about a convex body K of given 
volume is a minimum when K is a ball. This follows from a more general 
inequality, where the volume of circumscribed boxes is replaced by the product 
of quermassintegrals of the projections of K on appropriate lower dimensional 
subspaces. 

Introduction 

Let K be a convex body in Euclidean n-space E,, n > 2, that is, K is a compact, 

convex subset of E,  having nonempty interior. Let g e SO(n) be a proper motion, 

and let ul, "", un be the orthonormal frame that is the image under g of the standard 

orthonormal basis of En. Let nl , . . . ,  nk be a partition of n, with n = nl + "" + nk, 

where the n~ are integers satisfying 1 < n~ < n - 1, i = 1, ..., k. In what follows 

E[n~] will denote the nl-dimensional subspace spanned by the first nl members 

of Ul, "", un, E[n2] will denote the n2-dimensional subspace spanned by the next 

n2 members, and so forth. In other words, E[n~+l] will denote the subspace 

spanned by u~l +... +,~ + ~,..., u,, +... + ~ ~ 1, for 0 < ~ < k - 1. Further, let p ~,..., Pk be 

integers satisfying 0 < p~ < n~, i = 1, .-., k. Associated with the orthogonal projec- 

tion K[E[n~] of K into E[n~] is the p~-th quermassintegral computed relative to 

that subspace and denoted by ff'p~(K I E[n~]). The definitions and important 

properties of these quermassintegrals are found in [2]. For  example, ff'o(KlE[n~] ) 
is the n,-dimensional volume of K] E[n~]. Since we shall be dealing with products 

of these quermassintegrals it will be convenient to introduce the notation 

i f (K;  nl, "",nk; Pl, "",Pk) for the product  ff'p1(K] E[n l ] ) . . .  ff'pk(K[ e[nk]). 

Letting dg represent the density for normalized Haar measure on SO(n), the mean 

value of the product 1~ is given by 
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(l) J(K; n l, ..., nk; Pl, "" ", Pk) = f I~(K; nl, ..., nk; Pl, "", p~)dg, 

where the integration is over all of SO(n). 

Observe that if n l = n 2  . . . . .  n k = l  and P l = P 2  . . . . .  pk--O, then 

I~(K; 1,..., 1 ; 0,. . . ,  0) is the volume of the box circumscribed about K and having 

_ ul, "", + u ,  as outward normals of its facets. Hence J(K; 1, ..., 1 ; 0,-..,0) is the 

mean volume of boxes circumscribed about K. As another case, suppose n 1 = 1, 

n2 = n -  1 and Pt =P2 = 0 .  Then I~(K; 1 , n - 1 ; 0 , 0 )  is the volume of the 

cylinder circumscribed about K with generators parallel to u~ and base parallel 

to the hyperplane spanned by u2 , ' " ,u , .  Thus J(K; l ,n  - 1; 0,0) is the mean 

volume of right cylinders circumscribed about K. 

Let Wp(K) be the p-th quermassintegral of K itself. For example, Wo(K) is the 

volume of K, and nW1(K ) is the surface area of K. W,(K) = co,, is the volume of 

the n-dimensional unit ball. Our main result, giving an inequality between J and 

Wp, is the following: 

THEOREM 1. Let K be a convex body in E,, and nj, . . . ,n k, pa, . . . ,p ,  as above. 

I f  p = Pl + "'" + Pk, then we have 

(2) J(K; n 1, "",rig; Pl, "",Pk) > CO,, ""CO,~ Wv(K). 
09 n 

I f  p i ~ hi for at least two different values of i, then equality can hold in (2) only if  

K is a ball. Otherwise equality holds in (2) Jbr all K. 

Some special cases of the theorem are of interest. As pointed out above, 

J ( K ; 1 , . . . , 1 ;  0,. . . ,0) is the mean volume of boxes circumscribed about K. 

Using the fact that ~ol = 2 and Wo(K) = V(K) = the volume of K, we obtain 

from (2) 

(3) J(K; 1, ..., 1 ; O, ...,0) > 2 "  V(K). 
f.O n 

Equality can hold in (3) only if K is a bail. This generalizes a result of Radziszewski 

[4], obtained for the case n = 2, and later rediscovered by Chernoff [1]. A bit 

more generally, let Jp(K) denote J(K; nl , . . . ,nk;p~, . . . ,p , )  with n~ =n2  . . . .  

= n k = 1 ,  P l  = P 2  . . . . .  p,~_p = 0, and the remaining p~ all equal to 1. Then (2) 

yields 

2" 
(4) Jp(K) > Wp(K). 

(-O n 
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From the expression for the quermassintegrals of a box [2, p. 2161, and using 

the invariance of dg, it is not difficult to see that (4) is an inequality relating the 

p-th quermassintegral of K with the mean value of the p-th quermassintegrals of 

its circumscribed boxes. In particular, JI(K) is proportional to the mean surface 

area of boxes circumscribed about K, so (4) gives an inequality between this 

mean and the surface area of K. This inequality was also established by Schneider 

[5.1, using spherical harmonics. 

As another special case of Theorem 1, let nj = 1, n 2 = n -  1 and Pl = 0, 

P2- -P  ~ n -  l. Then f f ' (K;  1, n - l ; 0 ,  p) is the product of the altitude of a 

right cylinder circumscribed about K with the p-th quermassintegral of its base. 

In this case Theorem 1 gives an inequality between the mean of this product and 

Wp(K). For example, with p = 0 we obtain 

(5) J(K; l ,n - 1; 0,0) > 2~~ ~-- V(K), 
(.O n 

with equality holding only if K is a ball. The left hand side is the mean volume of 

right cylinders circumscribed about K. A choice of p = 1 leads to an inequality be- 

tween the surface area of K and the mean lateral surface areas of circumscribed 

cylinders. These results for circumscribed cylinders were established by Knothe 

[3] for the case n = 3. 

Our proof of Theorem l is by induction on n and p. Using a method similar to 

that in [3], we show that the validity of (2) with p = 0 follows from its validity 

for p > 0. Then by applying projection formulas of integral geometry, we show 

that (2) can be proved for n = m and p > 0, provided it is known to be true for 

all n < m. 

2. Preliminary lemmas 

In proving the following preparatory lemmas, we see that the functionals 

J (K; - . . )  bear a strong resemblance to the quermassintegrals in their behavior 

under projection and in forming parallel bodies. 

LEMMA 1. Let n ~ 2 be fixed, and suppose (2) holds for p > O. Then il 

follows that (2) is true with p--O. 

PROOF. Let B be the unit ball, let h > 0, and let K + hB be the outer parallel 

set of K at distance h, that is, the vector sum of K and hB. Using the fact that 
vector addition commutes with projection, applying Steiner's formula for volume 



252 G . D .  CHAKERIAN Israel J. Math., 

of the outer parallel set [2, p. 214], and dropping terms containing higher po- 

wers of h, we obtain 

(6) l~o(K + hB I E[n~]) > I,Vo(K ] E[n~]) + hn,~ ' l (K]  E[n,]). 

Now substitute successively a = 1, 2, ..., k in (6), multiply the resulting inequalities, 

and discard terms involving powers of  h higher than one on the right hand side. 

Then integrate both sides of the resulting inequality over SO(n). Using for the 

moment the more convenient notation J (K  ; p~, ..., p,) = J (K  ; n l, ... , n k; Pl, "", P,), 

we obtain 

J (K  + hB; O, . . . ,0) > J(K;  O, . . . ,0) + hnaJ(K; 1,0, ...,0) + 

(7) + hn2J(K; 0,1,0, ...,0) + ... 

�9 .. + hnkJ(K; 0, . . . ,  O, 1). 

Assuming (2) is true with p > 0, we can replace J(K;  1,0, ...,0) and subsequent 

terms in (7) by the appropriate multiple of  WI(K), retaining the inequality. After 

doing this, using n = n 1 + ... + nk, and observing that nWI(K ) = S ( K ) =  the 

surface area of  K, we obtain 

(8) J ( K + h B ; O , . . . , O ) > = J ( K ; O , . . . , O )  + h co"''''co€ S(K).  
COn 

We now use (8) to obtain an integral inequality. Let r be the radius of the largest 

ball contained in K, and for 0 < ), < r, let K~ be the inner parallel set of  K at 

distance r - 2. That is, Kx is the set of  points of K whose distance from the 

boundary is not less than r - ,L As shown in [2, p. 147], each Kx is convex, K0 the 

kernel of  K has dimension < n - 1, and, for 0 < 2 < 2 + h < r, we have the 

important relation 

(9) Kx+ h D Kx + hB. 

The obvious monotonicity of J then yields 

(10) J(Kx+h; 0, ...,0) > J(K:t + hB; O, .. . ,0). 

Using (8) we obtain then, 

(1l) d(Kx+h; O, . . . ,0) - J(K~; O, . . . ,0) > h co,, ...co,,, S(Kz). 
con 

Let 0 < 21 < )-2 < "'" < ~,, = r be any subdivision of the closed interval [0, r]. 

For each i = O, 1 , . . . , m -  1, set 2=; t~ and h = ; % 1 - 2 ~  in (11) and sum the 

resulting inequalities to obtain 
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m - - 1  

(12) J(K;O,. . . ,O)-J(Ko;O,. . . ,O) > ~176 ~ S(Kx,)(2i+l-2 , ) .  
(-On t = 0  

Note that we have used the fact that K, = K. The sum on the right-hand side of 

(12) is a Riemann sum for the integral with respect to )~ of S(Ka) over the interval 

[0, r]. Since that integral is precisely V(K) (see [2, p. 207]), we obtain from (12) 

(13) J(K; 0,. . . ,0)  - J(Ko; 0,.- . ,0) > co,1 '"  c~,~ V(K), 
(.0 n 

which implies (2) with p = 0. This completes the proof. 

It is of interest to note that if we do not drop terms of higher order in h, in (6) 

and (7), we obtain a formula of Steiner's type for J(K + hB; ...). 

The next lemma enables us to establish (2) for a given value of n and p > 0, 

provided we know (2) is valid for all smaller values of n and p >__ 0. 

[,EMMA 2. Let n >2  be given, and suppose (2) holds with p > 0 and all 

values of n smaller than this given value. Then it follows that (2) holds for the 

given value of n and p > O. 

PROOF. Let dE~ denote the normalized integralgeometric density for oriented 

q-dimensional subspaces of E,. Then we have the following projection formula of 

Cauchy's type: 

f O.)n_q (14) l~,(K I En_q)dE,_ ~ = Wr+q(K). 
(O n 

This formula, valid for 0 < r _< n - q  =< n -  1, is equivalent to that found in 

[-2, p. 232], except that here dEn_ q is the density for normalized Haar measure on 

oriented (n - q)-subspaces, and (1.4) still differs by a factor of 2 from the cor- 

responding formula in [2], even after normalization, since unoriented subspaces 

are used there. Suppose geS0(n)  sends the standard basis to u~,...,u,. Then 

ul, . . . ,u,_ q span an oriented (n -q) - subspace  En-q, and un-q+~, "",u, span the 

orthogonal q-subspace Eq. We can factor the density dg as follows: 

(15) dg = dgn_qdgqdEn_ q, 

where dgq is the normalized density for proper motions of E~ onto itself and 

dgn-q the normalized density for proper motions of En-q. This factorization is 

established in a manner analogous to that in [2, p. 227], or directly by observing 

that the Grassmann manifold of oriented q-subspaces of E, is the quotient space 

SO(n) ~SO(q) x SO(n - q). This enables us to write a projection formula like (14) 
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but involving integration over SO(n). With 1 < q < n - I, and 0 < r <  n - q, we 

have 

(16) f ff'.(KIE._o)dg = f  ff~.(K I En_q)dg._qdgqdE._.. 

Now observe that with E.=q fixed, the integrals with respect to dg._q and dgq both 

contribute only a factor of  1. Hence we have, using (14) 

(17) f I~',(K I E.'_~)dg = og__~._q_.y_ W,+q(K). 
d On 

Let us assume Pl > O. Letting dg.l be the density for motions in E[nj], dg._., 
the density for motions in the orthogonal subspace E._., ,  we may write, from (l), 

j = ( ff'nJg.,dgn_.,dE._., 
(18) d 

where for brevity we have omitted the parameters in some of the functions in- 

volved. Observe that the integral in the curly brackets in (18) is equal to 

ff"pl(KI E[nl])  since the integrand is constant with respect to the integration. Now 

let E.~_p, be the subspace spanned by Up,.1, Up,+2, "",Un,. Let us apply (17) to 

the space E[nm], setting n = n~, dg = dg.,, r = 0, and q = pa (here we use Pl > 0). 

We obtain then 

(19) ( ff.o(KiEn~_p~)dg., _ O.~-.~ ff.p,(KiE[nl]). 
,3 O.)nl 

We used the fact that K JE.,_p~ can be obtained as the projection of K IE[n~] into 

E.l_p,. Now substituting I~p,(K I E[na] ) for the integral in curly brackets in (18), 

then substituting in turn for ~p,(KIE[n~]) from (19), and using dg 
= dg.~dg._.,dE._.~, we obtain 

(20) j _ o9., ( l~0(K [e. ,_. , ) l~.~. . .  ff'.kdg. 
(Dnl -Pt  J 

Now we factor dg in a different way. Let dgp, be the density for motions in the 

subspace spanned by ua,...,ut, ,, and dg._p, the density for motions in the 

orthogonal subspace E._p~. Then we have from (20) 
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J = o9___,~_ ~ ff/o(Ki Enl_pl)ff/p2... 17Vpkdg,_~idgpldE,_p, 
(21) r176 d 

_ w.l f Y (KIE . -p : ;  nl - Pl,n2, "",nk; 0, p2, ..., pk)dgpldEn_pl, 
O n t - p l  J 

where J has the obvious meaning of J restricted to E,_ ~,. Since by our hypothesis, 

(2) is true with n replaced by n - PI, we have 

(22) J(K i E,_~I ; n 1 - Pl, n2, " ' ,  rig; O, P2, "", Pk) 

=> 
(Dn- F1 

Using this in (21), noting that the integral with respect to dgp~ contributes only a 

factor of  1, and applying (14) again, we have 

J ->- r176 re"k" f Wt,-. ,(KI E. ~ p ~ ~ d E ~  ~ p l 

O)n- pl d (23) 

~"'"'~"~ ~"-~' W~(K), 
O)n- p~ CO n 

proving that (2) holds under the given hypotheses. Since clearly a similar argument 

could have been used assuming any p~ > 0, this completes the proof. 

3. Proof of the main theorem 

We shall first establish that (2) is true and later consider when equality can hold. 

Consider first the case n -- 2, n~ = n 2 ---- 1. I f  pt ---- P2 = 1 ,  then equality holds in 

(2), both sides being equal to 4. I fp~ = 1 and P2 = 0, or vice-versa, we again have 

equality in (2) since we then simply have the fact that the perimeter of a convex 

curve is rc times its mean width. Lemma l now shows that (2) holds with p~ -- P2 

= 0. Now suppose m > 2 is given and we know that (2) holds for n < m and 

p > 0. Then Lemma 2 implies that (2) holds tbr n = m and p > 0. I t  then follows 

from Lemma 1 that (2) holds for n = m and p __> 0. It  follows by induction that (2) 

is true in all dimensions. 

We shall also use induction to establish when equality can hold in (2). In case 

n ----- 2 ,  n 1 ----- n 2 = 1, we have seen that we have equality for all K unless p~ = P2 -- 0. 

In the latter case, as shown in [1], and [4], equality holds only for a circular disk. 

Now suppose m > 2 is given. Suppose that it has been proved that in n < m, and 

p~ ~ n~ for at least two different values of i, then equality can hold in (2) only for a 

ball. Let K be a convex body in E,, for which equality holds in (2) with p~ r m~ 

for at least two different values of  i (where we now write m -- m~ + ... + mk 
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rather than n = ni + "" + rig), and suppose Pl > 0 (in a moment we shall consider 

the possibility p = 0). An examination of the proof of Lemma 2 shows that 

equality would have to hold in (22) (with n's replaced by re's). Since some pair of  

0, P2, P3, "", Pk must be respectively less than the corresponding pair of  ml - Pl, 

m 2 , ' . ' ,  mR, our induction hypothesis implies that K [ Era_p, is a ball for all (m - pl)- 

subspaces Em_, , .  Note that m - Pl > 2, since otherwise p~ > m - 1 so ml = m 

- 1, m: = 1, and we would not have Pi ~ mi for at least two different values of  i, 

contrary to hypothesis. Thus the subspaces Era_v, have dimension at least 2, and 

since the orthogonal projection of K on each such subspace is a ball, it is easy to 

show K itself must be a ball. Of  course we could have obtained the same result 

assuming any pi > 0, rather than PI > 0. Now suppose K is a convex body in E,, 

for which equality holds in (2), with p = 0. Then an examination of the proof  of 

Lemma 1 shows that we must have equality in (2) whenever we set p~ = 1 and 

pj = 0, j ~ i, i = 1, 2,. . . ,  k. Our previous argument then shows K must be a ball. 

By induction it now follows that if pi ~ n~, for at least two different values of  i, 

then equality can hold in (2) only if K is a ball. 

Ifp~ = n~ for all i, then both sides of (2) are equal to the product to,, ... o,~, so 

equality holds for all K. I f  p~'= n~ with only one exception, then (2), with an equal- 

ity sign, is equivalent to the projection formula (17), with appropriate parameters, 

so one again has equality for all K. This completes the proof of Theorem 1. 
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